

European Commission

Re-finding Industry

Defining Innovation

Report of the independent High Level Group on industrial technologies

Re-finding Industry - Defining Innovation

European Commission Directorate-General for Research and Innovation Directorate D — Industrial Technologies]

Contact Peter Dröll, Director Industrial Technologies E-mail Peter.Droell@ec.europa.eu@ec.europa.eu [First name.Last name]@ec.europa.eu RTD-PUBLICATIONS@ec.europa.eu

European Commission B-1049 Brussels

Printed by the Publication Office in Luxembourg.

Manuscript completed in April 2018.

Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of the following information.

The views expressed in this publication are the sole responsibility of the author and do not necessarily reflect the views of the European Commission.

More information on the European Union is available on the internet (http://europa.eu). Luxembourg: Publications Office of the European Union, 2018

Print	ISBN 978-92-79-85272-5	doi:10.2777/475890	KI-01-18-408-EN-C
PDF	ISBN 978-92-79-85271-8	doi:10.2777/927953	KI-01-18-408-EN-N

© European Union, 2018

Reuse is authorised provided the source is acknowledged. The reuse policy of European Commission documents is regulated by Decision 2011/833/EU (OJ L 330, 14.12.2011, p. 39).

For any use or reproduction of photos or other material that is not under the EU copyright, permission must be sought directly from the copyright holders.

Cover Image: ©vege #103014493, 2018. Source: Fotolia.com

Re-Finding Industry

Defining Innovation

Report of the independent High Level Group on industrial technologies

Table of Contents

Preface

Executive Summary

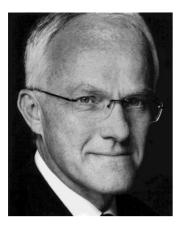
Part I

Re-finding Industry

1.	INTRODUCTION	11
2.	INDUSTRY IN EUROPE	12
3.	KEY ENABLING TECHNOLOGIES — STATE OF PLAY	15
4.	The Key Enabling Technologies for the future — `KETs 4.0'	19
5.	FINDINGS FROM THE STAKEHOLDERS' SURVEY	24

Part II

Defining Innovation


1.	MISSION-ORIENTED POLICY	25
2.	THE INNOVATION SYSTEM	36

Part III

Making it Happen

1.	MORE SKILLS FOR EUROPE	41
2.	More courage for funding in Europe	42
3.	More Single Market in Europe	46
4.	MORE SOCIAL DIALOGUE AND PARTICIPATION IN EUROPE	47

PREFACE

When the European freedom revolution of 1989/90 reunited Germany as well as Europe, we believed in a future of peace, freedom, prosperity and justice.

Today, after long years of economic crises, high unemployment, in particular of young people, and rising insecurity, many are fearful of the future. The worst financial and economic crisis, which did not start in Europe, is almost overcome. The European economy is growing. The number of jobs too. Unemployment decreases. And yet, many people remain fearful. This can be seen from Brexit and the recourse to nationalism, populism and separatism in some Member States.

At the same time, the post-war world order has vanished without giving way to a new stable and peaceful equilibrium. The People's Republic of China seeks to overtake the United States of America in terms of political and economic influence. Russia seeks a new empire in Europe and the territory of the former Soviet Union. Our immediate neighbourhood, the Middle East and North Africa, is the scene of civil and religious wars, with its effect of migration and terrorism reaching Europe.

Europe is, next to Australia, the smallest continent. Our relative share of world population is declining. The coming years will be shaped by further globalisation, digitisation and the transition to a knowledge society. Instead of addressing these challenges, which we can only master together, there is discord and no plan.

It is clear that the European economy will lose its competitiveness and we will not create new jobs in future markets without a strong and modern industrial base, new knowledge and new technologies, start-ups and new small and medium-sized enterprises as well as a mission-oriented approach to innovation policy. The High-Level Strategy Group proposes to generate inclusive productivity growth and create new jobs in modern industries while relocating jobs back to Europe, so that more jobs will be created than lost due to technological progress.

This inclusive growth should enable all regions of a united Europe to master the grand challenges of the future. In a united Europe we will be able to preserve the culture we have built over centuries, to keep a leading position in digitisation and to preserve Europe's quality of life. This requires us to act together on the basis of our values, so that we remain smart, sustainable and inclusive in the future.

For these reasons we propose to:

- support technologies in the area of security and connectivity, in addition to the new digital technologies. The suggested mission for an inclusive democratic society, related to these technologies, will have to be developed with the help of cultural and social sciences;
- ensure the full protection of private data as the European path to a successful digital economy, marking the difference with China with its total digital surveillance and attempts in the US to tap into digital communication around the world;
- build a circular economy and a new chemical industry which uses CO2 emissions as fuel and feedstock, in order to make industrial production in Europe sustainable and clean; and
- start missions for bio manufacturing, for the use of new sustainable technologies in agriculture, the protection of biodiversity, also to save the bees, and for an eco-system of secure and clean water supply.

We know very well that the European Union does not have a deficit of awareness, but of implementation. Europe's policy for the future, that is the research and innovation policy, is underfinanced and not aligned with national policies. In our group, we therefore discussed at length how we could make our proposals relevant for the 9th EU Framework Programme for Research and Innovation as much as for the Juncker-Fund and the important work of the European Investment Bank. We therefore made far reaching proposals for the future European innovation system. These proposals include the support for Commissioner Carlos Moedas proposals for a European Innovation Council and for the improvement of the European Venture Capital system.

Personally, I came to the conclusion that the European Commission should make proposals for "very big efforts" similar to the big success stories of the last decades, i.e. the creation of the euro, the opening of the internal borders in the Schengen area, the ERASMUS programme, the Airbus and the European Satellite programme for earth observation and positioning. This would underline Europe's ambition to contribute to building a better world. One example for such a common big and strategic effort could be the creation of a sustainable, efficient, resilient, secure and inclusive energy system. A competitive economy needs affordable energy. And a democratic society must not depend on energy supply from dictatorships. Another example is security. When times are instable, people long for security. Threats to security are coming from various sources with different looks including cyber-crimes, social inequalities, economic uncertainty, governance instability, reduced democracy, migrations, and terrorists' attacks. As President Jean-Claude Juncker said in his 2016 State of the Union speech: "The citizens want a Europe that protects, empowers and defends." Already today the EU helps neighbouring countries in their reforms for more stability and security. This is unique all over the world. Many neighbouring countries want to become EU members, but this will not be possible in the foreseeable future. Hence it is important to find new ways to enable them to build a prosperous future in peace, freedom and democracy.

A final point: Europe's heritage is rich and multifaceted. This legacy, developed over the last 2000 years and which today is unique, needs to be preserved, nourished and further developed. We need a broad discussion on our common future, based on our common heritage. And we need a great project to preserve and valorise our European sovereignty.

I would like to thank all members of the High-level Strategy Group for their dedication and for their good ideas. Furthermore, I am grateful to Commissioner Moedas for his strong support throughout our work. Many scientists, entrepreneurs, politicians, civil servants, associations and trade unions from many countries have shared their expertise and knowledge with us. I would like to thank also the 2500 European citizens from five Member States, who participated in the survey. Last but not least, I thank Peter Dröll, who supported us together with his team and colleagues. Without him, this courageous report with its many new ideas would not have been possible.

My wish is that the European Parliament, the European Commission and the European Council be courageous and break new ground together. This is simply because our goal is: Europe should be the best place to live.

fürze Killyes

Jürgen Rüttgers, Chair of the High-Level Strategy Group

EXECUTIVE SUMMARY

Recent years have shown marked disparities between Member States, and the gap between the rich and the poor has not been narrowing. The trend of rising inequality has not been reversed. From 2007 to 2013 market income inequality increased by 6%. This general trend is driven by a combination of factors, notably the effects of the recent big recession and the loss of jobs in some Member States, as well as the potential effects of technological change.¹ Adding to this the speed of technological transformation, it is no wonder that many people fear the loss of their job, a reduction of their salary and a lack of career opportunities. If we, the citizens of the European Union, want to secure our way of life, our human rights, our democracy and our future, we must do better than today.

Therefore, we recommend to the EU and its Member States to focus their policies on inclusive growth and sustainable protection of our planet. This will unite our societies and allow us to go beyond the fruitless dispute between austerity and increasing debt.

In order to finance the investments necessary for inclusive growth, we need to increase productivity growth. We are convinced that this can be achieved with higher investment in education, research and innovation, close to the market. This is also what is needed for Europe to stay on par with its main competitors in the USA and China.

We are convinced that a strong European economy needs strong industry. Economic growth needs manufacturing and services. An innovative economy needs inclusive growth.

Over the past 15 years, labour productivity growth was almost entirely driven by manufacturing and business sector services.² High-tech firms were able to ramp up their productivity by 18 %.³

If we in Europe want to reach our targets, we need a new industry policy with more leading positions in key enabling technologies and a new innovation policy.

Therefore, and in view of the 9th EU Framework Programme for Research and Innovation, we have defined new key enabling technologies (KETs), proposed exemplary missions for Europe and suggested actions to improve the overall innovation system.

The new KETs we propose cover production technologies, digital technologies and cyber technologies. They encompass the technologies identified by the EU in 2009, open them up and add two new digital technologies. Our proposal is for the EU to prioritise advanced manufacturing technologies, advanced

¹ Science Research and Innovation Performance in the EU 2018, p.55 & 57.

² OECD Compendium of Productivity Indicators 2017. P.58.

³ Science Research and Innovation Performance in the EU 2018, p.55 & 57.

materials and nanotechnologies, life science, micro- and nano-electronics and photonics, artificial intelligence, security and connectivity. The technologies we propose are multi-KETs and crossover KETS and will serve as the basis of missions. An opinion poll of 2500 citizens across the EU revealed high awareness of technologies and high interest in technical developments, considered as relevant for daily life. Benefits and risks are perceived as rather balanced for society as a whole, while at individual level perceived benefits prevail.

The second task was to define missions for a European knowledge-based industry and research sector. It is no coincidence that the first mission we propose in part II of our report is a project that supports an inclusive democratic society, aiming to build a connected and secure Europe based on social quality. We then look at the conditions needed for an innovation system to function well, such as freedom of expression, openness to the world, the right framework for digitisation and cooperation across Europe's regions. This means that innovation policy should cover the full value creation chain, from fundamental research to applied research to product development and business creation.

In part III of this report, we discuss implementation. To help the KETs and innovation to succeed, we have formulated 16 recommendations around four headings:

- More skills for Europe,
- More courage for funding in Europe,
- More 'Single Market' in Europe, and
- More social dialogue and participation in Europe.

Our recommendations range from mutual recognition of secondary education levels to programme funding based on EU-wide competitions, from creating clusters based on a European value chain approach to consulting social partners during the KET transformation process.

If we get it right, Europe can start a new future, ending the disparities between the rich and the poor, overcoming the polarisation between austerity- and debtdriven policies, and providing the right answers for everyone, from democrats to populists. Our goal is simply: Europe will be the best place to live.

Part I – Re-finding Industry

1 Introduction

With the stabilisation of the euro, the election of the President of the European Commission by the European Parliament and the Future of Europe process launched at the 60^{th} anniversary of the Rome Treaty, Europe has recovered its capacity to act.

Growth was low and unemployment high between 2000 and 2017. However, the most striking feature over this period is the dissimilarity between Member States: average annual rates of GDP growth varied from 0.4% to 4.4%, average rates of unemployment from 4.6% to 15.5% and youth unemployment from 8.3% to 35.7%. The target to invest 3% of the EU's gross domestic product (GDP) in Research and Development (R&D) and the associated job creation⁴ has not been met. In fact, the R&D investment rate stagnated at 2% of GDP, with differences among Member States ranging from 0.6% to 3.3%.

These figures contrast with the EU's repeated policy ambitions to become the world's most competitive and dynamic knowledge-based economy. It would seem that there is no deficit of awareness, but of implementation. The EU's Research and Innovation (R&I) policy is underfinanced and not sufficiently aligned with national policies. Member States have cooperation and financing problems. In short, the EU did not manage to implement a common economic and industrial policy, which would reduce disparities. Achieving this will be crucial for the future of Europe: it is founded on the values of equality and solidarity and, in a world of global competition, has filled these values with life probably better than any other continent.

While some argue that technological innovation leads to more inequality in wages and wealth,⁵ it is more likely that today's increasing inequality is the result of insufficient uptake of technological innovations and a failure to diffuse them widely.⁶ Economic growth no longer reduces inequality.

Therefore, Europe not only needs to complete the internal market but also to develop a new industrial policy aiming at inclusive productivity growth and convergence across its Member States. This will help the EU to deliver on the objective of a 'highly competitive social market economy' (Article 3 of the

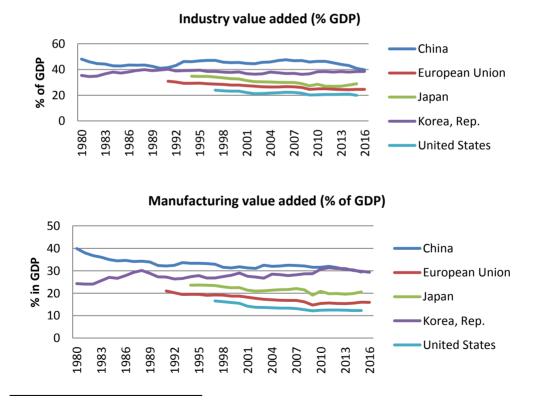
⁴ Up to 3.7 million jobs in 2025, P. Zagamé (2010), The Cost of a non-innovative Europe. .

⁵ Frey and Osborn, The future of employment, 2013; OECD's 2018 policy brief 'Putting faces to the jobs of automatisation', however, states that employment in total may continue to rise:

https://www.oecd-ilibrary.org/employment/automation-skills-use-and-training_2e2f4eeaen_

⁶ W. Naudé, P. Nagler (2017). Technological Innovation and Inclusive Growth in Germany, Bertelsmann Stiftung Gütersloh, arguing that the welfare state has to increase low incomes and at the same time improve the conditions for competition so that companies can increase wages and invest.

Lisbon Treaty), which seeks to guarantee everyone a chance for upward social mobility and a balance in living standards between urban and rural areas.


Industry is typically the largest source of business R&D in advanced economies, has larger technological and economic multipliers than other sectors, and is closely linked to knowledge-intensive services.

It is against this background that we see the mandate given to us by the European Commission to review key enabling technologies and suggest the best possible ways to maximise their industrial deployment, leadership in strategic technologies of the future and societal impact.⁷

2 Industry in Europe

Since 2000, Europe has experienced a significant de-industrialisation. For instance, the contribution of manufacturing to European GDP decreased from 18.5% in 2000 to 15% in 2012, and 3.8 million jobs were lost between 2008 and 2012 in this sector.

⁷ Terms of reference of the Horizon 2020 High-level Strategy Group on Industrial Technologies (E03540) http://ec.europa.eu/transparency/regexpert/index.cfm, Renewed EU Industrial Policy Strategy — 27.6.2017, COM(2017) 479 final.

Source: World Bank

However, this does not mean that industry is going in the same direction as agriculture about a century ago, with a slow but continuous reduction in its overall role in the economy.

Industry is central to Europe's economy. It contributes to Europeans' prosperity through business in global and local value chains, and provides jobs to 36 million⁸ people — one out of five jobs in Europe. In particular, the manufacturing sector is hugely important because of its major role in driving productivity and innovation. An hour of work in manufacturing generates nearly EUR 32 of added value. With a share of approximately 16% of total value added, manufacturing is responsible for 64% of private sector R&D expenditure and for 49% of innovation expenditure. Every new job in manufacturing creates between 0.5 and 2 jobs in other sectors. More than 80% of EU exports are generated by industry.⁹

In addition, strengthening the industrial base builds more resilient economies. For example, following the economic crisis, EU Member States with a strong industrial base recovered more quickly.

Finally, recent years have seen a reversal in the decline of EU manufacturing, with impressive growth rates as regards:¹⁰

- industry's share in total value added (plus 6 % since 2009);
- employment: with over 1.5 million net new jobs in industry since 2013;
- labour productivity: 2.7 % per year growth on average since 2009, higher than both the US and Korea (0.7 % and 2.3 % respectively).

As well as increasing productivity, ensuring the EU is a global leader in a wide range of industrial technologies promises greener production (increased energy and resource efficiency, CO_2 utilisation), new and safer jobs (with some hazardous work performed by robots), and innovative and more customised goods and services. Evidence shows, at the level of firms and industries, that productivity-enhancing technology causes job losses in some cases and job gains in others.¹¹ However, on balance, the number of companies and industries which experience employment growth exceeds the number in which jobs are cut. Part of a strategy for coping with today's rising shares of high- and lowwage jobs — job polarisation — must involve growth in technology-intensive production work and the development of related new skills. Europe must therefore strongly pursue technological leadership in industry, not least for its net positive effects on the labour market.

⁸ These figures include manufacturing, extractive industries and utilities industries. They exclude business services and construction which are, however, closely linked to EU industry, not least against the backdrop of the growing role of value chains and servitisation.

⁹ Eurostat – Extra-EU trade in manufactured goods – April 2017.

¹⁰ Eurostat, taken from COM(2017) 479 final, 13.9.2017.

¹¹ Miller, B. and R. Atkinson (2013), 'Are robots taking our jobs, or making them?', The Information Technology and Innovation Foundation, http://www2.itif.org/2013-are-robots-taking-jobs.pdf.

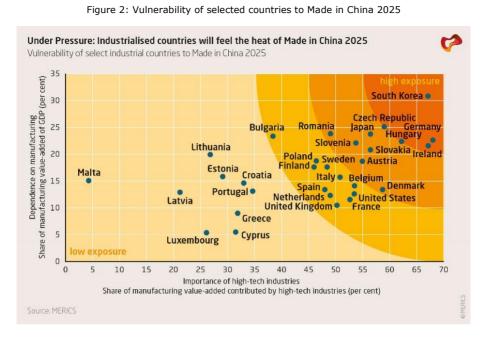
Despite this increased productivity, Europe's industry faces several challenges.

The first critical issue is how already-developed and emerging technologies diffuse. By one estimate, even in Germany, leader in industrial production, 'the full shift to industry 4.0 could take 20 years'.¹² The issue is twofold. Firstly, it is about increasing the numbers of new companies entering the market and helping them to grow. Secondly, it is about increasing productivity in established companies which face obstacles to implement new technology. In the second case, small and medium-sized enterprises (SMEs) in particular tend to use key enabling technologies less frequently than larger companies. In Europe, for instance, 36 % of surveyed companies with 50-249 employees use industrial robots, compared to 74 % of companies with over 1 000 employees.¹³ Only one fifth of EU companies are highly digitised.¹⁴ Only one in five manufacturing companies has already used advanced manufacturing solutions.¹⁵ Addressing these two aspects of technology diffusion - firm entry and growth, and more general adoption - involves different policy instruments.

A second issue relates to increasing global competition. Global players, such as China, are progressively turning their attention to increasing their industrial base and are focusing on particular - often advanced - technologies and strategic value chains. The Made in China 2025 strategy aims to upgrade China's industrial base by focusing on 10 key industries.¹⁶ In the short and medium term, this strategy can present attractive opportunities for some European businesses to provide critical components, technology, and management skills. However, in the long term, Made in China 2025 amounts to an import substitution plan. Market access for European business can be expected to shrink, especially in areas where Chinese companies are able to close the technology gap¹⁷ (Figure 2). The increased international competition is also visible in the decline of total manufacturing employment in advanced economies. In the United States for instance, between 2000 and 2014 the decrease was about 10 %,¹⁸ and 10 out of 19 manufacturing sectors produced less in 2015 than in 1999. This means it is essential for the EU to support the competitive development of strategic value chains in which most future manufacturing jobs are likely to be created in Europe.

¹² Lorentz, m. et al. (2015), 'Man and machine in Industry 4.0: How will technology transform the industrial workforce through 2025?, The Boston Consulting Group, https://www.bcgperspectives.com/content/articles/technology-business-transformationengineered-products-infrastructure-man-machine-industry-4/.

¹³ Fraunhofer (2015), 'Analysis of the impact of robotic systems on employment in the European Union',https://ec.europa.eu/digital-single-market/news/fresh-look-use-robots-shows-positive-effect-automation.


¹⁴ Europe's Digital Progress Report, SWD(2017) 160.

¹⁵ Innobarometer, 2016.

¹⁶ Next-generation IT; high-end numerical control machinery and robotics; aerospace and aviation equipment; maritime engineering equipment and high-tech maritime vessel manufacturing; advanced rail equipment; energy-saving vehicles and neighbourhood electric vehicles; electrical equipment; agricultural machinery and equipment; new materials; biopharmaceuticals and high-performance medical devices.

¹⁷ The European Union Chamber of Commerce in China.

¹⁸ From 19.5 million jobs in 2000 to 15 million in 2014.

Thirdly, increasingly globalised value chains and digital transformation are structurally changing the labour market and the nature of work. This is expected to have significant repercussions for the types of work available. Accordingly, major investments in education and skills are necessary. There is a global race for talent and the European workforce needs to acquire high-level skills, which will need to continuously improve, to boost employability and competitiveness. By current estimates, more than 70 million adults in the EU are affected by gaps in basic skills.¹⁹ Businesses are increasingly reporting difficulties in finding employees with adequate skills. For example, the automotive industry lacks science, technology, engineering and mathematics (STEM) profiles and is facing stiff competition for skills from other sectors.²⁰

3 Key Enabling Technologies – State of Play

3.1 EU policy on Key enabling technologies since 2009

Key enabling technologies (KETs) have been a priority for EU industrial policy since 2009. KETs were defined in 2009 as being 'knowledge intensive and associated with high R&D intensity, rapid innovation cycles, high capital expenditure and high-skilled employment. They enable innovation in process, goods and service innovation throughout the economy and are of systemic relevance. They are multidisciplinary, cutting across many technology areas

¹⁹ COM(2017) 479 final, 13.9.2017.

²⁰ European Commission Blueprint for Sectoral Cooperation on Skills: Automotive. (http://europa.eu, 2017).

with a trend towards convergence and integration. KETs can assist technology leaders in other fields to capitalise on their research effort'.²¹

The six KETs identified in 2009 were:

- advanced manufacturing technologies,
- advanced materials,
- nanotechnology,
- micro-/nano-electronics,
- industrial biotechnology, and
- photonics.

The concept of KETs has been instrumental in policy-making and programming in the run-up to the current Multiannual Financial Framework (2014 – 2020).

The programme structure and technological scope of the 'Leadership in enabling and industrial technologies pillar' of Horizon 2020 are based on the 2009 list of KETs.²² KETs are also a priority under the Structural Funds.²³ 65% of EU regions and 15 Member States indicated one or more KETs as a smart specialisation priority. KETs are the second highest chosen priority for R&I under the regional smart specialisation strategies. State aids rules have also been modernised in 2014 to help Member States better support investments in KETs.

A Memorandum of Understanding between the European Commission and the European Investment Bank facilitates access to finance for investments in KETs (with EUR 11.8 billion in EIB lending in the period 2013-2016).²⁴

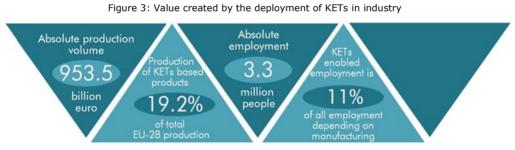
A communication on the criteria for important projects of common European interest (IPCEI) has been adopted, and highlights the importance of these projects for the KETs policy. Several IPCEI projects are currently under preparation, and build on KETs research under Horizon 2020.

Actions have also been taken to address the need for multidisciplinary skills in KETs and to develop a vision for KETs skills, including through specific measures such as support to develop and adapt curricula under the COSME, Europe's programme for small and medium-sized companies.

3.2 The economic importance of KETs

²¹ COM(2009) 512.

For example, the MIDES project (http://midesh2020.eu/) aims at giving millions access to drinking water thanks to advanced microbial desalination materials using a low-energy process of producing safe drinking water; the project SONO (http://cordis.europa.eu/project/rcn/92 784_en.html.) uses nanotechnologies to fight hospital-acquired infections by impregnating hospital textiles, such as bedding and bandages, with antibacterial copper oxide and zinc oxide nanoparticles.


Article 5 of the European Regional Development Fund highlights in particular 'pilot lines, early product validation, advanced manufacturing capabilities and first production, in particular in KETs'.

²⁴ http://ec.europa.eu/growth/content/memorandum-understanding-between-europeancommission-and-european-investment-bank-eib_en.

KETs are the essential technology building blocks which underpin Europe's global leadership in various industries, especially in high value added and technology-intensive products and services. As an example, Europe has a global market share of 33 % in robotics, 30 % in embedded systems, 55 % in automotive semiconductors, 20 % in semiconductor equipment, and 20 % in photonics components.²⁵

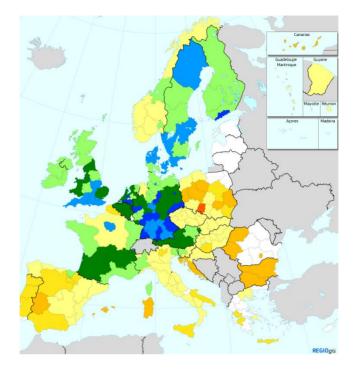
In 2013 (the latest year for which data are available), KETs-based products represented 19% of total EU-28 production (EUR 950 billion), as compared with 16% in 2003. KETs were associated with 3.3 million jobs, with the biggest share being in advanced manufacturing technology and micro-/nano-electronics.²⁶ Approximately 10000 SMEs based their business on the development and commercialisation of KETs.

For instance, by the end of 2015 the EU photonics industry employed 290000 people, compared to 235000 people in 2005 (+23 %). 42000 new jobs could be created in photonics by 2020.²⁷ European photonics production has grown by 5% a year on average since 2005 and the European photonics market is estimated at EUR 69 billion.

Source: KETs Observatory, 2013 Eurostat data

The Regional Innovation Scoreboard (2016) also shows that regions which specialise in KETs report a positive and significant effect on economic performance. Specialisation in other fast-growing technologies does not have the same impact.²⁸ This is also valid for regions characterised as 'modest' or 'moderate' innovators (Figure 4). The potential for regions in the process of catching-up is even higher: the lower the technological advancement of a region, the higher the impact of specialisation in KETs on its growth.

Figure 4: Regional Innovation Scoreboard 2016 $\ensuremath{\mathbb{C}}$


Regions with a positive specialisation in KETs are located everywhere in the EU

²⁵ COM(2017) 479 final, 13.9.2017.

²⁶ Van de Velde, E. / Debergh, P. / Wydra, S. / Som, O. / de Heide, M. (2015). Key Enabling Technologies (KETs) Observatory: Second report: European Commission, DG GROW.

²⁷ Photonics21 (2017). PPP Impact Report 2017. Jobs and growth in Europe — Realising the Potential of Photonics.

²⁸ Ibidem.

KETs specialisation and innovation performance, a map of Europe

EU KETs-related exports grew from 2007 to 2015, with the exception of micro-/nano-electronics, which faced increasing competition from the US and Asia. Available data for 2010 and 2015 suggest that while Europe increased its KETsrelated exports, East Asia (Japan, China, South Korea, Singapore and India) registered a considerably higher increase, with China's performance being particularly strong. Starting from 2015, the EU-28 has outperformed North America (US, Canada and Mexico) by approximately 30% in shares of total exports for technology generation and exploitation by (Figure 5).

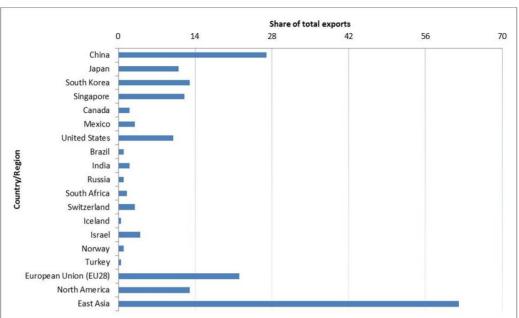


Figure 5: Technology generation and exploitation, share of total exports

Comparison by countries/regions for all KETs in 2015

Source: European Commission, KETs Observatory, 2017

While the EU runs an overall trade surplus for manufactured goods,²⁹ a closer look at exports of high-tech products and KETs-based products reveals a deficit for these sectors. In 2015, the EU showed an overall deficit of EUR 63.5 billion in trade in high-tech products with the group of 20 leading trade partners. The largest deficit for high-tech products was with China. Among the top 20 partners, the EU had a trade deficit in the high-tech sector with eight other countries: Vietnam, Malaysia, United States, Thailand, Switzerland, South Korea, Japan, and Singapore.

4 The Key Enabling Technologies for the Future – "KETs 4.0"

4.1 The main underlying challenges

In addition to broader economic and social challenges, such as rapid population ageing, slowing growth in labour productivity, rising inequality, protracted unemployment, and climate change, there are three main challenges for Europe's industry:

- Increasingly knowledge-intensive production;
- Digitisation, which is closely linked to the first challenge; and

²⁹ EUR 224 billion between January and October 2017.

• Globalisation, and in particular competition from a number of emerging market economies, of which China is the most significant.

Throughout history, progress has been associated with knowledge. In feudal societies, value came from the production factors 'land' and 'labour', in industrial societies value depended on the production factors of 'capital' (i.e. machines and equipment) and 'labour'. In the knowledge society, the classic production factors of land, capital and labour are added to and amplified by 'knowledge'. Knowledge has become the most important resource of our time. In distinction to land, capital and work, knowledge increases when shared with others. And, fundamentally, knowledge is now generated and disseminated at greater speed than at any time in the past, owing to digital technologies. Knowledge is also the new social question of the 21st century, as equal access to knowledge is crucial to reduce disparities.

The knowledge society will be accelerated by the widespread digitisation of the economy and society, leading many to call this process the 'digital revolution'. It is a process comparable in its scope and impacts to the industrial revolution of some 200 years ago.

Progress in digital technologies, in combination with other key enabling technologies, is changing the way we design, produce, commercialise and generate value from products and related services. Advances in technologies such as the Internet of Things, 5G, cloud computing, data analytics and robotics are transforming products, processes and business models in all sectors of the economy, ultimately reshaping global value chains and patterns of industrial specialisation.³⁰ This paradigm shift requires new policies for infrastructure, research and development, industrial value chains, education and training, regulation and standards, data protection and co-creation.

While international cooperation and trade has been going on for a long time, the scale and speed of widespread globalisation is unprecedented. The globalisation of the economy changes the world and is also part of a changed world. In recent decades, millions of people have been able to escape poverty thanks in part to globalisation. At the same time, ever more people fear that their jobs are at risk, that research and production will be relocated abroad and that their countries could be drained of capital and investments. Others fear the loss of national power, native cultures and traditions.

4.2 Technology foresight

The ongoing revolution in industrial production — Industry 4.0 — results from a confluence of fast-developing technologies. These range from a variety of digital technologies (such as 3D printing, the Internet of Things, advanced robotics) and new materials (bio- and nano-based) to new processes (for example, data-driven production, artificial intelligence and synthetic biology). Europe possesses considerable strengths, and in some cases global leadership, in a number of these technologies. This is particularly true of artificial intelligence,

³⁰ COM(2016) 180 final.

digital security and connectivity. They have been identified as strategic technologies by China in its Made in China 2015 strategy, by South Korea under a USD 1.5 billion initiative and by the US as part of a strategic programme run by the US National Science Foundation.

As regards future technologies, several foresight studies have indicated that the current set of six KETs are still among the technologies that are most likely to disrupt economies and societies over the next 10-15 years. The OECD, based on several technology foresight exercises in its member countries and Russia, identified 40 key and emerging technologies that might best tackle the various 'grand challenges' the world faces (such as ageing, climate change, natural resource depletion, health inequality). The six KETs figure prominently in that list.³¹ Foresight studies conducted or commissioned by national authorities show that KETs will continue to play a very important role in the future.³² European Commission studies on future technologies also indicate that the existing KETs remain essential in addressing the major challenges that society will face in years to come.³³ The KETs Observatory also analysed eight promising value chains based on KETs, which match several regional thematic partnerships for industrial modernisation.³⁴

4.3 The next generation of key enabling technologies

Europe's competitiveness lies in our capacity to create balanced, cohesive, well educated, healthy and protected societies. Therefore, KETs must contribute to improving peoples' lives, fighting poverty and correcting inequalities.

Against this background, we suggest a new, broader definition of KETs, based on the following four criteria: impact, relevance, key capacity, and enabling power.

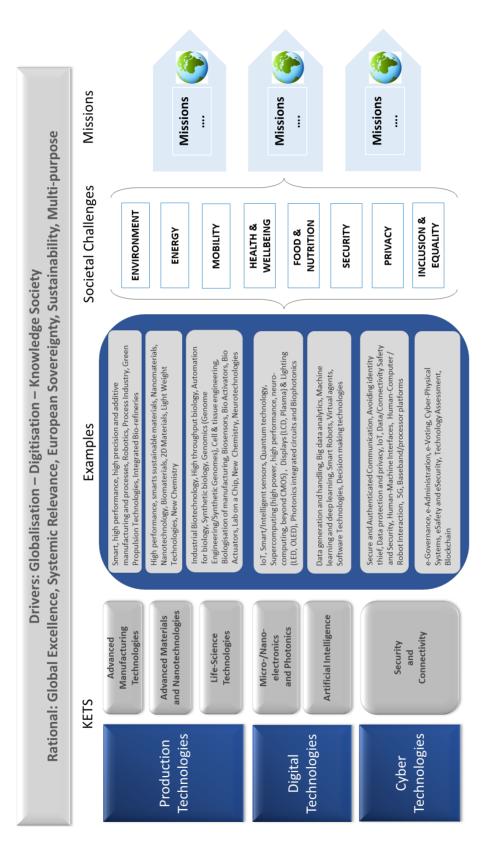
KETs have substantial impact in terms of creating high quality jobs, improving people's lives and creating future prosperity.

KETs have systemic relevance for all phases of product development, ensuring Europe remains a leader across industrial value chains. This also includes societal participation to support democratic engagement.

³¹ OECD (2016). Science, Technology and Innovation Outlook 2016.

 ³² Technologies clés 2020: préparer l'industrie du futur 2020. Etude conduite par le ministère de l'Economie, de l'Industrie et du Numérique (2016). Fraunhofer ISI (2014). BMBF Foresight Cycle 2. Study conducted for the Federal Ministry of Education and Research (BMBF, Germany). Russia 2030: Science and Technology Foresight (2016) Forschungs- und Technologieperspektiven 2030 (2015) 100 opportunities for Finland and the world, Parliament of Finland, Committee for the Future (2015).).
³³ EC [European Commission] (2015). Preparing the Commission for future opportunities —

³³ EC [European Commission] (2015). Preparing the Commission for future opportunities — Foresight network fiches 2030. EC [European Commission], DG RTD (2015). The Junction of Health, Environment and the Bioeconomy: Foresight and implications for European Research & Innovation Policies.


³⁴ http://s3platform.jrc.ec.europa.eu/thematic-areas.

KETs have the capacity to improve people's health, safety and security, supporting sustainable development and secure connectivity and communication among systems and individuals.

KETs enable multiple and cross-sectoral industrial applications, helping to generate global excellence, new knowledge and new forms of participation. This creates economic progress and can help to reduce inequalities, while supporting the EU's industrial leadership. KETs are instrumental in sustainably supporting a circular economy and green growth.

On this basis, we recommend:

- confirming the existing six KETs while merging four of them into two broader categories (materials and nanotechnology, photonics and micro-/nano-electronics);
- broadening the KET 'biotechnology' to 'Life Sciences technologies';
 - adding two new main fields, namely:
 - i. artificial intelligence,
 - ii. digital security and connectivity.

5 Findings from the Stakeholders' Survey

Relatively little is known about how people perceive key enabling technologies. We therefore launched a pilot survey in five Member States, with some 500 people per country responding to the questionnaire.

This survey provided insight on people's awareness, knowledge, expectations and attitudes regarding the proposed list of KETs. It addressed questions such as the impact of KETs on society, the individual and the economy, the assessment of benefits and risks of new technologies, and the role of policy in monitoring KET-related developments and their impact.³⁵

The survey provided the following insights:

- Interest in technical developments relevant for daily life is quite high: between 60 and 80 % of the people interviewed declared a strong or very strong interest.
- Only a minority considers current technological developments a 'normal change'. Many perceive these developments as extraordinary or revolutionary.
- An overwhelming majority is convinced that new ideas and products are crucial for the development and sustainability of society.
- Asked whether the societal benefits outweigh the risks of new technical developments, the responses vary across countries with a small majority holding that benefits exceed risks. However, a clear majority is convinced that the benefits for themselves as individual are much higher than the risks.
- The level of awareness of the 6 KETs is surprisingly high, with well above 50 % of respondents having heard of microelectronics and photonics and more than 95 % of artificial intelligence.
- The assessment of the impact of KETs on jobs, economic growth, wealth and the environment varies. For some technologies such as advanced manufacturing or artificial intelligence the effects are seen less positive, whereas the effects of advanced materials and nanotechnology are perceived more positively, with quite significant differences among countries.
- In terms of funding by the EU, nanotechnologies and new materials, biotechnologies and security and connectivity technologies are considered priorities.
- Last but not least, respondents stated that Member States more than the EU — should monitor the impact of KETs on jobs and on data security.

³⁵ See http://ec.europa.eu/research/industrial_technologies/index_en.cfm

Part II – Defining Innovation

1 Mission-Oriented Policy

A mission-oriented policy approach has emerged as key element of policies for inclusive growth and new jobs.³⁶ We agree with this approach and consider that industrial policy needs to be built around missions that fully encompass key enabling technologies. Doing this will help provide the best possible conditions for the European economy to be social and sustainable, while also being internationally competitive.

The missions are developed within the framework of an innovation system comprising private and public agents, researchers and educators, producers and innovators and, of course, civil society. Civil society has a central role in identifying the main challenges, and must be actively involved in the development of missions and projects. The role of society in the missions and projects is not only in the execution phase, but also in most phases of the public policy cycle. Civil society must also take part in the identification of the problem itself, in setting the agenda for solutions, in the policy making and evaluation. Communication with society should aim to share the results of these missions and also to raise awareness of the impact of innovation activities, the need to share risks and benefits and the need to develop a pro-innovation culture.

This means that the societal effects of innovation must be closely monitored, and strategies developed to address new problems, making sure that the ensuing social changes as well as the effects on the environment correspond to the expectations of EU citizens.

The new mission-oriented policy should aim to promote re-industrialisation through higher and more widespread productivity growth, new jobs, new company creation, relocating outsourced work places, and strengthening the European knowledge base through world-leading education and training.

Mission-oriented policy should focus on multi- and cross-sectional technologies and multilateral efforts.

Our proposals for missions are based on the following criteria:

- Missions should have clear goals, be understandable to the public, and be specific while not covering many issues.
- Missions should be defined not in terms of impact but in terms of a viable solution that can be applied and replicated. Impact is important but comes after the result is obtained, when it needs scaling up.

³⁶ Mariana Mazzucato, 'A problem-solving approach to fuel innovate-led growth' https://ec.europa.eu/info/sites/info/files/mazzucato_report_2018.pdf.

- Missions should not be limited to sectors having a public client; their scope needs to cover many sectors and involve a range of public and private actors.
- Missions should generate expectations and encourage participation from the public, including young people.

Missions should also consider the global 'megatrends' of the coming decades which will affect all continents and all parts of society, as identified by the European Investment Bank, notably:

- I. population growth and food shortage in developing countries,
- II. population ageing in advanced economies,
- III. urbanisation, and
- IV. sustainability.

On this basis, we have identified the following exemplary missions as our contribution to the debate on the direction of future EU research and innovation investments:³⁷

- 1) An inclusive democratic society
- 2) Industry renewal
- 3) Digitalisation as a European jobs engine
- 4) Transforming thoughts into action the new internet
- 5) Circular economy shift to de-production and re-production
- 6) Clean and safe mobility re-founding car industries
- 7) Carbon re-use from climate killer to industry asset
- 8) Energy independence affordable renewables
- 9) European healthcare networks breakthrough in disease prevention and treatment
- 10) Bio manufacturing bringing life to manufacturing
- 11) Re-inventing food production sustainability and traceability
- 12) Biodiversity saving bees and other pollinators
- 13) Oceans of drinking water starting with affordable desalination
- 14) Bouncing back making Europe's society more resilient

1) An Inclusive Democratic Society

Goals: Digital technologies should be used to enhance a democratic and secure Europe and thus to overcome societal divisions, populism and radicalisation. The digitisation of society presents a risk of social exclusion. However, if used properly, the potential exists of creating a unified democratic, transparent digital Europe; a Europe where citizens can voice their views and take a more active role in decision-making processes. This mission aims to build a connected and secure Europe that generates social and economic equality.

Impact and relevance: Connectivity is an essential prerequisite and right for all citizens to participate on equal terms in our democracy. Broad groups of users

³⁷ https://ec.europa.eu/info/designing-next-research-and-innovation-frameworkprogramme/what-shapes-next-framework-programme_en

can be connected via the internet, practice e-learning and e-voting, participate remotely in democratic processes and exercise online activism while preserving privacy and safeguarding anonymity. At the same time, technologies are being exploited to undermine democracy, for example via the spread of 'fake news', including from foreign entities. Europe has to take the path of using technology to drive equality, democracy, unity and security for citizens. Technologies that support e-government, e-voting, e-health platforms, a secure internet for information, a connected society with the right to be digitally connected, no matter where a person lives, can enhance democratic participation, security, and equality and help build a united Europe. Moreover, enhanced forms of participation will allow European societies to become more resilient, while building the capacity to provide flexible answers to increasingly frequent and severe climate-related disasters and hazardous events.

Solutions: The EU needs to develop a core principle in Charter of fundamental rights to recognise access to fast and secure internet as a key enabler for democratic participation, the rule of law, societal inclusion and equality. De facto, monopolies by technology giants need to be avoided and, where other continents favour total tapping of personal data or total surveillance, Europe's path will be characterised by the full protection of private data. Programmes, funds and regulations need to be dedicated to eradicate digital exclusion and enhance participation. Additional funding is needed to drive connectivity, assist technology adoption and ensure no EU citizen is left behind. Block chain, as an encrypted and thus an extremely safe way of closing agreements or contracts, can be used in many different contexts where privacy and decentralised solutions empowering users is needed in digital transactions. Programmes in the national education system, health, e-government processes and social assistance programmes need to be coordinated and work together across Europe to realise their full potential.

2) Industry Renewal

Goals: The goal is to generate industrial renewal in Europe, such that the continent becomes the global leader in producing and using the key technologies of the next industrial revolution, with leadership capabilities becoming widely diffused. This means achieving a substantial increase of productivity and production, an increased share of global industrial exports, more persons employed in manufacturing, a doubling of overall industrial resource efficiency and the share of firms using advanced (digital and other) production processes, as well as halving dependency on fossil fuel resources and, industrial waste released to air, water and soil.

Impact and relevance: Future European industry has to combine high and widespread productivity with a high level of environmental sustainability. This will mean moving from local optimisation — for individual factories or clusters of firms — to complex system optimisation, with major impacts on the way factories are designed, the technologies factories use, infrastructure and wider government policies (for instance in education, research and infrastructure). Regions and countries with highly productive industrial capacities will generate skilled jobs with decent salaries, thus contributing to European social cohesion.

Solution: The introduction and wide diffusion of new production technologies and processes (including in traditional industries) such as advanced connectivity solutions, flexible automation and robotics, additive manufacturing, zero-defect manufacturing, combined and hybrid technologies together with holistic resource-efficient approaches, will help ensure the industrial leadership of Europe. More sustainable vertical factories and mini-factories in cities, direct and reverse logistics in cities (for the reuse of products and materials), production of personalised products close to customers, human robot cooperation, modular and transportable factories, and innovative production equipment are just some of the technical solutions that need to be developed. Diffusion must occur across and within countries and across firms of different size. The development of co-creation design, manufacturing and service platforms will significantly reduce the time to market, while boosting Europe's competitiveness.

3) Digitalisation as a European Jobs Engine

Goals: Europe has the opportunity to capitalise on its knowledge base and highly educated workforce to develop a 'Smart Growth' approach establishing digitalisation as European jobs engine.

Impact and relevance: Digitalisation is a global trend of major transformative character, comprising all areas of daily and professional life. Businesses, consumers and industry are increasingly using digital technology to grow, overhaul workflows and generate efficiencies and to develop new products and services.

As digitalisation is driven primarily by knowledge and know-how, it presents a huge opportunity to build on Europe's strengths and compete on the market. As such, digitisation, and accompanying social and economic policies, can become a job opportunity for Europe to establish itself as a global leader and main hub for expertise, while sustaining and improving Europe's societal and economic model.

Solutions: There are three main types of digitalisation to open up new opportunities for growth and to generate new jobs:

Efficiency-driven: Increased efficiency and scale from digitalisation will impact production chains and potentially make certain layers redundant. This will clearly have disruptive effects on the labour market: a future-oriented and lifelong-learning employment and education strategy will be essential to re-train and upskill people for the new jobs created by digitisation. It is important to recall that increased efficiency will give more people access to products at lower costs and therefore support standards of living and well-being. An example is the application of automation in the logistics sector.

Evolution-driven: With respect to the evolution of new products and services, the resources and number of jobs are more or less stable, although higherquality jobs will emerge. An example is the development of new smart phone generations with new technology/service features that enable new types of business and activities. Market-growth oriented: With respect to applying digitalisation to open/access new markets and developing new business models, new job profiles will develop and the number of jobs will increase. Examples are the various data-based approaches using digitalisation technologies that open up new business models and innovation.

4) Transforming Thoughts into Actions — The New Internet

Goal: To enable people to act at a distance while still being in control of the process. The dream of mankind has always been to transform thoughts into actions. We are at the beginning of a new era in which by means of sensors, actuators, communication and big data processing, it is becoming possible to act on reality in a pervasive way. Applications cover many fields, from healthcare (e.g. surgery) to industry applications (e.g. remote operation of production), from home applications to security, from inspection to exploration and, in general, all the fields of application which enlarge the capabilities of human beings to act in distant, harsh, dangerous, and small-scale environments but also, more simply, standard environments where an individual cannot be present.

Impact and relevance: Up to now, the US has been dominating the internet and its applications. With the new internet era, there is a great opportunity for Europe to gain a central position. Indeed, Europe is well advanced in robotic platforms, mechatronics and automation which is at the core of the new transformation. Europe has a long tradition in this field, with many innovative companies which are very agile in creating new devices and applications tailored to different needs. Therefore, Europe has the potential of being the first mover in the creation of the new domain of the internet. This in turn has the potential to open the way to new products and services that we never dreamed of. With its strong democratic tradition, Europe can develop this new revolution taking into account the rights of people faster than others, and with the human being at the centre of the new developments.

Solutions: To develop new sensors and wearable devices that enable personal interaction with reality without being physically present. Physical devices should be able to guarantee reliability, safety and robustness, taking into account the impact of physical laws, the interaction with human beings, interaction with nature, and interaction with other devices. This requires high performance computing, quantum computing, ultrafast communication, optical fiber, optical communication and networks, system connectivity, power electronics, printed/flexible electronics, memory and storage, analogue and mixed signal devices, heterogeneous integration/embedded systems, optical components and systems, robotics, mechatronics, sensor technologies, smart manufacturing, human-machine interaction, virtual reality, intelligent/sensor-based equipment, electronic and optical functional materials, energy storage and generation, surface engineering and coatings, monitoring and control, connectivity standards, big data analytics, and sensor fusion.

5) Circular Economy — Shift to De-Production and Re-Production

Goal: Rather than reusing only the material or the energy they contain, products should be turned into competitive multi-life products. Products are developed in order to provide certain functions that are of interest to the user. Once the product reaches the end of life, instead of scrapping the product, most of the functions should be reused in new products. This is highly efficient since most of the value of the product can be regained in this way. Therefore, if appropriate solutions are developed, second life products can become more competitive than products produced from scratch. Since the growing needs of the society cannot be met even with 100% reuse of raw materials, new substitute materials are needed as well as sustainable methods for societally accepted exploration, mining and mineral processing in Europe.

Impact and relevance: The introduction of a circular economy has the potential impact of updating the whole of European industry and Europe can become the biggest market in the world based on circular economy. The circular economy not only is respectful of the environment, but it can create more competitive products since it allows the reuse of existing functions. Potentially, all the production systems will eventually be modified to incorporate de-production and reproduction technologies, logistic and reverse logistics will be integrated, and business models completely changed. The renovation of infrastructures, industry, and related services has the potential of mobilising a tremendous volume of new investments and create new jobs. Also, new technologies and new machines will be created and exported to other regions of the world. A marked reduction of end-of-life products polluting the environment could be attained. As of today, many new environmentally and climate friendly technologies and products require resources that are scarce or inexistent in Europe. Full recyclability will therefore secure European sovereignty in raw materials supply for de-production and re-production.

Solutions: To develop new product design methods and tools that consider the many lives of products. Collect, monitor and analyse information over the life of the product, inspect products to identify the possibility of regaining functions, separate product modules without jeopardising their functions, automatically repair the functions, upgrade existing functions, integrate production with deproduction and re-production to define new business models based on the loyalty of the client through multiple use of the product, create new product functions for the continuous interaction with the user, develop material substitutions of critical elements and scarce materials, substitute nonrenewable by renewable materials wherever possible, design new methods and technology for collecting, dismantling, shredding, separating, and recycling, apply new bio-materials as engineering material, develop resource efficient manufacturing processes to reduce scrap and swarf, develop new methods and technologies for sustainable exploration, mining and mineral processing.. This manufacturing, requires robotics, advanced Smart manufacturing, all optoelectronics, X-ray vision, mechatronics, Internet of Things (IoT). Intelligent/ sensor-based equipment, Intelligent/ sensor-based equipment, Big data, forecast models, Product design, Life Cycle Assessment, system design, supply chain design. In addition, using biobased manufacturing and products

facilitates biodegradation and reuse as well as carbon recycling as feedstocks for new products.

6) Clean and Safe Mobility — Re-Founding Car Industries

Goals: Europe should become the global leader in emission-free vehicles and autonomous mobility (electric/hybrid and autonomous/partially-autonomous). This will reduce by half traffic fatalities and lead to sustainable autonomous mobility systems, emission free, ready for practical use, and at affordable costs.

Impact and relevance: Employing about 3 million people in manufacturing and another 11 million in services, the transportation system is of high socioeconomic relevance for Europe. Road transportation accounts for 21% of Europe's fossil fuel consumption, and 60% of its oil consumption. CO2 emission gases are increasing global warming, and gases emitted by conventional vehicles as NOx are toxic. The roll-out of connected car technologies, the development of low CO2 and NOx propulsion systems, together with intelligent traffic management technologies, will reduce pollution particularly in urban environments. Increasingly autonomous behaviour, the ability to collaborate with other machines and humans, and to learn from experience will mark the shift to a secure connected, cooperative and automated mobility.

Solutions: Policy making needs to target decoupling economic growth and transport, providing the right framework and incentives. The technology solutions should be focused on: a) new energy efficient system and architectural concepts; b) filling/charging and energy and power management; c) control strategies and predictive health management; d) smart sensors; e) smart actuators and motors in transport systems, f) environment recognition; g) localisation, maps, and positioning; h) control strategies; i) artificial intelligence in automated mobility and transportation; j) communication inside and outside vehicle; k) testing and dependability; l) functional safety and fail-operational architecture and functions; m) swarm data collection and continuous updating; and n) predictive health monitoring for connected and automated mobility.

7) Carbon Re-Use — from Climate Killer to Industry Asset

Goal: To develop economically viable methods to capture and reuse carbon.

Carbon emissions are produced in every activity both industrial and nonindustrial. Even if carbon emissions can be reduced, they cannot be completely eliminated. Since CO2 is responsible for greenhouse effects, which can have a tremendous impact on the planet, it is necessary to find ways to remove the excess CO2 from the air once it has been generated.

Impact and relevance: Solutions generated under this mission could have a tremendous impact on the quality of the atmosphere and could be critical to saving the planet. Also, completely new devices and a new infrastructure coupled with energy generation infrastructure could be developed in Europe. New devices could be also exported in other countries since all the regions of the world have the same problem.

Solutions: Capture of carbon at point sources is already possible now, but the challenge is to develop new physical and chemical principles, new technologies and devices that allow capture to be done cheaply and on a large scale. Once captured, CO2 could be stored underground, but more appealing solutions are to use it as feedstock, as fuel or as a basic raw material. One option would be to capture CO2 in the form of biomass e.g. bubbling it through tanks of microbes or algae that utilise the CO2 as carbon for growth and thereby produce value added products. This biomass can then be used as a feedstock for fuels or materials production.

8) Energy Independence — Affordable Renewables

Goals: A united energy market allowing all partners to participate without location-related restrictions.

Impact and relevance: better efficiency and a more transparent system. For instance, renewables production would be located where it is inherently most efficient, instead of following national incentives. Harmonisation would also allow formation of new energy service providers, such as aggregators, operating in multiple countries within same regulatory framework. This would accelerate the greening of the energy systems.

Solutions: Affordable renewable technologies for energy independence and improved energy storage technologies and systems require research in new strategies for controlling generators, and for the improvement of the existing algorithms for the optimal use of the obtained power; new concepts for generators; development of cross-border connections, power measurement units, phase-shifting transformer technologies: high and low voltage converters, new Maximum Power Point Tracking algorithms, interfaces for network connection involving new quality and grid management; development of software applications and tools for the observability and the flexibility of the whole power system; as well as new materials and components to improve both energy storage costs and performance.

9) European Healthcare Networks – Breakthrough in Disease Prevention and Treatment

Goals: To make Europe the world leader in disease prevention and treatment.

Impact and relevance: Breakthroughs in cutting-edge technologies such as genomics, bioinformatics, genome editing, cell engineering and synthetic biology, in combination with data management, analysis and sharing, will deliver new developments in disease prevention, diagnosis and treatment. This will make Europe an excellent place for health research and will catalyse the emergence of new industries that will improve the future health, security and wealth of all European citizens.

Solutions: Becoming the best place in the world for disease prevention and medical treatment will be enabled by the combination and convergence of state of the art life science advances and digital health technologies. Each citizen is an individual, and individual healthcare and personalised approaches will be the

future medicine in Europe. In recent years, there have been great strides in the underpinning technologies for DNA sequencing (e.g. the ability to read the human genome) and the ability to write DNA (DNA synthesis). These have been key drivers for advances in our ability to diagnose and treat disease. New developments in genomics, genome editing, cell engineering and synthetic biology will speed up drug development while decreasing costs, reduce our dependency on animal testing, and increase our ability to respond more rapidly to pandemics or biosecurity threats. They provide opportunities to tackle antimicrobial resistance, neurodegenerative diseases, rapidly develop new vaccines and target specific cell types such as cancer cells. Data management, analysis and sharing are absolutely crucial for the future of European healthcare. There is an opportunity to develop new electronic healthcare structures and share data such as cancer genomics, epidemiological studies, data from large-scale drug discovery and testing programmes, as well as results of public health initiatives. This data sharing and analysis will inform the way we understand and develop treatments for disease. Secure networks and highquality digital infrastructure and connectivity will be essential to ensuring standardised and interoperable electronic patient and personal health records (strong control by the citizen/patient). Such networks, for instance in the form of a European bio-informatic system for cancer treatment, will allow remote consultations, participative and preventive healthcare solutions, and equality of access to the highest quality of healthcare. Such advanced and integrated healthcare networks will improve efficacy and contribute to lower public healthcare costs. This combination of emerging technologies provides enormous opportunities for the emergence of new industries in Europe not just based on life sciences but also coupled with other developments in informatics (big data, artificial intelligence, software).

10) Biomanufacturing — Bringing Life to Manufacturing

Goals: Europe will become the global leader in biomanufacturing. Europe with its distinct landscapes and agriculture will develop varied location specific feedstocks and processes for the production of diverse commercially important molecules, decreasing reliance on fossil fuels and stimulating new environmentally friendly economic activity. An enhanced bioeconomy offers the opportunity of a future in which economic growth can be coupled with environmental responsibility.

Impact and relevance: Biomanufacturing is a form of manufacturing that uses biological systems (e.g. microbial cells, animal or plant cells, enzymes) to produce commercially important molecules for use in the chemical, energy, pharmaceutical, materials, food and agricultural industries. It can produce an incredibly diverse range of complex chemistries and products including fuels, medicines, fragrances and flavours, crop protectants and new materials with uses ranging from medicine to fashion. Biomanufacturing can utilise simple sugars or waste from agriculture, forestry or even landfill. Another benefit is that because biomanufacturing uses biological systems, the conditions used for the manufacturing processes are relatively mild - not requiring high temperatures, high pressures and harsh or toxic substances - which means that energy inputs are reduced and it is relatively environmentally benign.

Solutions: Europe produces a lot of diverse biomass that can act as feedstocks for biomanufacturing. This diversity can be exploited to develop new processes at local levels using different agricultural wastes, forestry wastes or municipal wastes depending on availability and scale. This provides an opportunity for EU communities to tailor new biomanufacturing industries to their own local context and feedstock supply developing а network of distributed biomanufacturing facilities. This distributed manufacturing approach would also benefit from reduced transport costs. The scale of biomanufacturing can vary enormously from individual farmers utilising waste for biodiesel production to very large-scale biorefinaries for platform chemicals to high tech pharmaceutical manufacture. Europe is well placed to take advantage of this opportunity that would rely on the development of new biological processes and facilities, new production organisms and cell lines (including those genetically engineered for optimum performance) and the development of new value chains. The new cutting-edge technologies of synthetic biology, genomics, genome engineering and high throughput biology will contribute enormously to the future of biomanufacturing in Europe.

11) Re-Inventing Food Production — Sustainability and Traceability

Goal: Europe to be a global leader in securing a viable, sustainable, and transparent food value chain.

Impact and relevance: The EU's food sector is a major player in the Union's well-being and future. The food and drinks industry is the EU's biggest manufacturing sector in terms of jobs and value added. Europe is also one of the largest manufacturers of food processing equipment. Farming, food processing and food-related retail and services, for example, provide around 44 million jobs in Europe. However, the food value chain is increasingly threatened by climate change, natural disasters, pests, diseases, and volatile prices. There is an urgent need to innovate along the food value chain to be more efficient, organic and sustainable, while meeting consumers' increasing demand for more transparency, including plant and animal farming practices and provenance information. Europe's ability to innovate in this sector will secure its leading role as a resilient provider for safe, healthy and sustainable food.

Solutions: By leveraging technological innovation in manufacturing, life sciences technologies, precision farming, artificial intelligence, security, and connectivity, Europe can make better use of resources (e.g. land, water, energy, pesticides, antibiotics) along the food value chain, thereby improving production and distribution efficiency while bettering food quality. For example, new genome editing technologies can provide a step change in crop and animal health, resilience and productivity.

Europe should aim to be a global leader in reducing greenhouse gas emissions associated with the food value chain, reducing food and packaging waste along the production and value chain. In addition, the development of new biotechnology processes can turn agricultural waste into valuable products such as commodity chemicals and fibres providing new income streams for farmers and enhancing the green economy. Europe should strive to increase food transparency and traceability. Europe can be a pioneer in facilitating citizen access to information on food provenance, allergenics, processing, distribution and related labour practices by leveraging digital tools such as sensors, artificial intelligence, security and connectivity. Further, Europe should be a leader in data-driven planning along the food supply chain, taking into account forecast information on food production and demand, thereby reducing wastes while meeting demand. Also, Europe should strive to lead the change towards personalized food supply chains to precisely meet citizen's nutritional and allergenic requirements under guaranteed conditions.

12) Biodiversity — Saving the Bees and other Pollinators

Goal: Stop pollinator decline to enable food security.

Impact and relevance: The decline of wild bees and other pollinators – almost one in 10 bees and butterfly species is facing extinction – has wide-ranging consequences for our society. Around 78% of temperate wild flowers in Europe need animal pollination and 84% of crops benefit, at least in part, from animal pollination. Pollinators strongly affect both the quantity and the quality of crops: an estimated EUR 15 billion of annual EU agricultural output is directly attributed to pollinators. The diversity of crops which depend on pollinators is an important part of a healthy diet. Animal pollination also plays an essential role in the functioning of ecosystems and is, therefore, important for biodiversity conservation, especially where specific plant-pollinator cooperation has developed.

Solutions: There is no one single driver of pollinator decline. Direct threats to pollinators include land-use change, intensive agricultural management and pesticide use, environmental pollution, invasive alien species, pathogens and climate change. Therefore, in addition to assessing the full extent of pollinator decline and getting a better understanding of the main drivers, solutions will include: providing alternatives to harmful pesticides, adopting ecosystem-based approaches and nature-based solutions for safe food production and promoting green infrastructure for wider habitat and ecosystem services availability, facilitated by technologies such as precision farming, big data generation and analytics, machine learning, and DNA barcoding.

13) Oceans of Clean Water — Starting with Affordable Desalination

Goal: Securing clean and safe water ecosystems, supplies and management.

Impact and relevance: Water is crucial for people's health, nutrition, and for the ecology: clean water is crucial not just for health but also for growing crops and raising fish and livestock. For a variety of reasons, the supply of clean (drinking) water is increasingly a problem around the globe: ever growing cities need more water, climate change reduces the supply in some regions which rapidly become more arid, and irrigation projects drain water from rivers upstream. In addition, groundwater supplies are being depleted and some large harbour cities around the globe are under threat as pumping has led to lower fresh groundwater level, and increased groundwater salinity.

Solutions: Developing cheap desalination methods and technology to secure clean water supplies for large coastal cities. Moreover, as desalination is only part of the answer, water conservation methods for residential areas as well as industrial processes need to be developed as well as energy efficient or energy producing waste-water treatment plants.

14) Bouncing Back — Making Europe's Society more Resilient

Goal: Europe able to combine the highest resiliency with the lowest life cycle costs.

Impact and relevance: Over the past few decades the frequency and severity of climate-related disasters and hazards, as well as terrorist attacks, has progressively increased. This requires building our capacity – social, technical and organisational - to prevent and provide flexible responses to actual dangers.

Solutions: High quality preventive measures and early warning systems need to be developed, such as: weak signal analysis and early detection of shocks and stresses; buffer capacity of urban, transport and other critical systems; speedier communication between cities and citizens during major events like disasters or terrorist attacks; new materials and technologies (such as those based on biomimicry); increasingly resilient infrastructure (including water/energy supply); new tools allowing for the detection of stress and preventing the collapse of critical ecosystems; and, new digital networks generating new solutions and community engagement through the combined efforts of local communities, technologists and social activists. This will also support the agenda of other EU policies such as the digital agenda, migration policy and Europe as a stronger global actor.

2 The Innovation System

As discussed in the introduction to this report, inclusive productivity growth and convergence across EU Member States is the key to Europe's social market economy. Around 80 % of economic growth will derive from improvements to productivity.³⁸ And, productivity is, to a large degree, driven by investment in research and innovation. These investments need to be brought into the best possible innovation system to have the desired impact.

We are going through fundamental changes and the time to adjust to them is short. Only in a united Europe will we be able to safeguard the culture we have built over millennia, to stay competitive, to keep our leading position in digitisation and to maintain our high quality of life. We must act together based on our fundamental values if we are to remain 'smart, sustainable and inclusive' in the future.

³⁸ Science, Research and Innovation Performance in the EU 2018, p. 34.

The term 'innovation system' refers to 'the complex of organisations, institutions and policies that together mould the rate and direction of technological change'.³⁹ Innovation systems combine capabilities in basic and applied research, technological and non-technological development, and involve all knowledge institutions, the public and the private sector. Innovation systems are a key success factor all along industrial value chains and need to be fully integrated at regional, national and European level.

Against this background, we consider that the following issues are particularly important for Europe:

1) Freedom of expression

Successful innovation needs the freedom of expression, the freedom of academic research, educational responsibility and a constitutional government. This is also the basis for successful governance, a competitive economy and good jobs.

2) Open to the world

The EU is committed to a multilateral world, one without the dangers of nationalism or protectionism, without tax evasion or customs barriers. If the global economy develops towards more protectionism, ensuring openness while fostering societal diversity, resilience and sovereignty, in combination with protecting citizens' freedom, job-security and health, will be one of Europe's biggest challenges. Europe has to take appropriate action, including significant increases in investment in research and innovation under the 9th Framework Programme for Research and Innovation, in order to stay competitive vis-à-vis the United States, China and other Asian competitors such as Japan and South Korea. Moreover, to support this goal, companies that do not pay taxes in Europe should not automatically receive public funding and should not be allowed to acquire strategically important technology companies.

3) Mastering the digital transformation

Digital transformation opens up huge opportunities by empowering citizens through new participatory tools, making government services more efficient and participatory, and driving productivity in the private sector. At the same time, it raises many new questions, such as: are we allowed to use algorithms in our legal system? Who is responsible for the fake news on social networks? Who should act to make sure that hackers don't tamper with democratic elections? May social networks use algorithms unknown to users to direct communication and thus influence users' political thinking? Could recruitment decisions be automatic based on characteristics deduced based on internet data? To what extent may information about age, gender and illness be used for

³⁹ 'The moon and the ghetto' (Nelson 1977, rev 2011).

economic decisions, or for genetic research, materials science or electronic miniaturisation? $^{\rm 40}$

These increasingly complex moral questions require a collective, wide-ranging and inclusive process of reflection and dialogue, leading to a common, internationally recognised ethical and legal framework.⁴¹ Moreover, they deserve a new research branch, started with the XAI 'Explainable artificial intelligence' project at Stanford University, through which processes and decision-making chains should be made comprehensible and understandable in detail. In addition, we need to develop a new understanding of whether and to what extent correlations can complement or even replace causal decision making.

The most important task, however, will be to enforce human and civil rights also in the digital and cyberworld. Contrary to the promises of neo-liberalism, which refuses regulation and lets the markets determine the future, we know from experience how beneficial clear framework conditions are for society and its core values. This implies that the basic rules should be set by democratically legitimised institutions rather than be left to private companies.

In order to ensure a new balance between the fundamental right to privacy and protection of personal data on the one hand, and right to security on the other hand, a high level of protection of European data protection law is needed, taking into account the evolution of technology and the market demand for it. The new European General Data Protection Regulation will be the world's most ambitious set of rules, giving individuals stronger rights of information, access and erasure ('right to be forgotten').

In addition to the regulatory framework, further investment in cyber security will be an effective precautionary measure to prevent abuse of EU citizens' data protection rights. Also, further increasing our knowledge about the digital world and developing the digital economy based on our European values will give the right signals to the markets..

4) Cohesion within the EU

Europe has many leading regions when it comes to manufacturing, which guarantees European leadership in world markets. However, due to their history, these regions tend to develop individually, whereas Europe could be much stronger if the leading regions worked together.

It is also important that Europe's various regions develop equally. The Member States from Central and Eastern Europe need to be better integrated into the European Research Area.

The EU can play a significant role in initiating and supporting these processes, for instance through new instruments for interregional cooperation in research and innovation that are not based on geographical proximity but on the commonality of interests and content. One option is to increase the European

⁴⁰ Taken from Ranga Yogeshwar, speech at Leibniz-Gesellschaft 23.1.2018.

⁴¹ https://ec.europa.eu/research/ege/pdf/ege_ai_statement_2018.pdf.

dimension and added value of the structural and investment funds by setting a minimum share (for instance 30%) for inter-regional cooperation. In view of digitisation, administrations in rural areas should, together with higher education and research institutions, businesses and chambers of commerce, develop comprehensive strategies for digitisation before applying to the European Structural and Investment Funds.

5) Thought leadership on innovation

Thought leadership on innovation is dominated by the US. The EU needs to significantly invest to advance our knowledge about the innovation system in an inclusive society and in the science of innovation, and to report on the innovation climate and the internationalisation of research and innovation.

Part III – Making it Happen

In the coming months, important political decisions will be taken regarding the reform of the EU, the completion of the Single Market, the structure and size of the EU's long-term budget, and the next EU framework programme for research and innovation. These decisions will condition the policy framework necessary for KETs and industrial and innovation policy to succeed. Success will ultimately be measured by the extent to which inequality and job polarisation are addressed and Europe's unique social model is secured.

As we stated in the introduction, there is no deficit of awareness, but of implementation. We recommend to focus action for 'Re-finding industry and defining Innovation in Europe' on four areas:

- More skills for Europe
- More courage for funding in Europe
- More Single Market in Europe
- More dialogue and participation in Europe

1 More Skills for Europe

Education and training to boost skills and competences are crucial and will become ever more important as automation and digitisation advance. Europe's skills agenda ⁴² needs a strategy to increase educational attainment — for everyone, as underlined by the Heads of State and Government in December 2017.⁴³ Education and vocational training fosters societal integration in Europe, helps people find jobs and, consequently, contributes to reducing income inequality. It facilitates a better understanding among citizens and higher labour force mobility. A number of steps can be envisioned towards achieving these goals:

1) More ERASMUS for vocational training

The success of Europe's culture- and character-building programme for university students, ERASMUS, is universally recognised. In its current form, Erasmus+ covers higher education, vocational training, youth and sport.⁴⁴

⁴² http://ec.europa.eu/social/main.jsp?catId=1223.

⁴³ https://www.consilium.europa.eu/media/32179/14-final-conclusions-en.pdf.

⁴⁴ A 2014 study found that Erasmus participants are half as likely to experience long-term unemployment compared to young people who do not go abroad to work/study. Regional analysis confirms that students from Eastern Europe are 83 % less likely to experience long-term unemployment if they have taken part in Erasmus. Erasmus+ traineeships have been particularly successful. More than one in three Erasmus trainees is offered a position at the company in which they do their traineeship. Erasmus trainees are also more entrepreneurial than their stay-at-home counterparts: 1 in 10 has started their own company and more than 3 out of 4 plan to, or can imagine doing so. They can also expect faster career advancement; staff with international experience are given greater professional responsibility according to 64% of employers. See more at: http://ec.europa.eu/programmes/erasmus-plus/sites/erasmusplus2/files/annual-report-2016_en.pdf.

Within the next EU budget, the resources for ERASMUS should be significantly increased, in particular for vocational training.

2) Mutual recognition of secondary education

Secondary education, typically at the age of 15 or 16 years, provides young people with skills that are relevant for employment. Secondary education diplomas should be mutually recognised across the EU. For this purpose, a process similar to the Sorbonne / Bologna process should be launched and lead to the efficient completion of national school programmes.

3) Life-long learning

Automation and digitisation require life-long learning. Europe needs to have a better framework for this, and must strengthen institutions to support education and training beyond the usual school age. Objectives include: age-adjusted learning in schools, the acquisition of diplomas, vocational training with diplomas comparable across Europe, and the improvement of possibilities to study science, technology, engineering and mathematics.

4) Universities in Europe

As with vocational training, effective higher education institutions that are connected to their communities are an important part of Europe's innovation system.

As proposed by President of France Emmanuel Macron, a network of universities should be created in Europe to educate Europeans who are able to work together in different languages, across borders and disciplines.

2 More Courage for Funding in Europe

The complexity of a state's intervention rationale rises with the complexity of the research challenge, the production cost and the responsibility towards clients, patients and societies. Public support can take a variety of forms, ranging from financing early stage research to subsidies for investment in production, from public procurement policies to regulation and from provision of risk capital to infrastructure that makes it possible to diffuse and scale-up technologies.⁴⁵

1) Principles of sound funding

Given the limitations of technology forecasts and the need to precisely target support measures, the chances of success increase when the following principles are applied:

- aim for the long-term;
- opt for technology openness and neutrality;
- support both disruptive and incremental improvements in technologies;

⁴⁵ European Investment Bank, non-published study for the HLSG, 26/11/2017.

- ensure early-on involvement of private investors;
- provide sufficiently scaled financial support for SMEs and start-ups;
- support an attractive environment with dynamic entries and exits for companies starting- and scaling up;
- care for and monitor social impact;
- introduce competition on intermediate results through a stage-gate approach, with specific milestones for go/no-go in projects;
- create an 'express track' under regional funding for projects evaluated as fund-worthy by the EU (e.g. 'seal of excellence' under the SME instrument);
- cluster regional and EU funding opportunities in one place and simplify participation and funding rules.

Most of the necessary support mechanisms exist already, but they need to be significantly improved as regards volume, speed and flexibility.

2) Make the next framework programme big

The six KETs identified in 2009 have received priority-support under EU research and innovation programmes. Some EUR 6.6 billion, or 8.5% of the total Horizon 2020 budget, was allocated to these six KETs. Given the crucial role of KETs in the economy and society, as described in section 3, and the need to use public and private investment in R&I to boost the competitiveness of EU industry, an adequate level of support should be earmarked in the next EU budget. Based on evidence of the overall benefits of R&I investment, the budget of the post-2020 EU research and innovation programme should be doubled to EUR 160 billion.⁴⁶

In addition, support under the next EU research and innovation framework programme must adequately reflect the two additional KETs as well as the wide scope of life science technologies. The expected market growth in KETs⁴⁷ calls for a commensurate additional allocation in the future EU budget, with an appropriate balance between physical and digital technologies.

3) Openness to disruptive innovation

Few of the global tech companies that emerged over the past 20 years come from Europe and many promising European start-ups have relocated to the US or have been bought up by companies in the US, where the level of venture capital funding is five times greater than in Europe.⁴⁸ Europe's innovation system therefore needs to pay more attention to start-ups and SMEs with a

⁴⁶ We fully support the LAB-Fab-APP report of the High Level Group chaired by Pascal Lamy http://ec.europa.eu/research/evaluations/pdf/archive/other_reports_studies_and_docume nts/hlg_2017_report.pdf

⁴⁷ For instance, it is estimated that the global market for artificial intelligence will be worth some USD 20–24 billon by 2022, with a compound annual growth rate of more than 45 % from 2016 to 2022. https://www.statista.com/statistics/607716/worldwideartificial-intelligence-market-revenues/

https://www.alliedmarketresearch.com/artificial-intelligence-market.

⁴⁸ https://ec.europa.eu/info/sites/info/files/eic_hlg_bz_web.pdf.

potential for breakthrough innovation where new, high risk, innovations merge the physical and digital in novel ways.

We therefore fully support Commissioner Carlos Moedas' proposal for a European Innovation Council. This Council should focus support on the need to turn scientific results into technologies, and on scaling-up the application of technologies and tech-based solutions. This would foster fast growth of start-ups in the critical phase of proving their business case, allowing them to reach the critical mass they need to sustain their business.

4) Programme funding based on EU competition

The EU's Horizon 2020 programme has been successful in co-funding institution building (teaming, twinning, ERA-Chairs). Building on this success, it is time to go one step further and make national and regional programmes compete for top-up funding at EU level. The idea is to combine funding with the necessary local, regional government support and cross-regional cooperation, be it meritbased recruitment, innovation infrastructure (as in the case of teaming) or authorisation procedures.

5) Boost venture capital

The average size of venture capital funds in Europe is around $\in 60$ million, compared to $\in 120$ million in the US, and most of them operate only in one Member State. The creation of a market-driven pan-European venture capital fund-of-funds, as initiated by Commissioner Carlos Moedas under the Capital Market Union, is an excellent, overdue measure.⁴⁹ As many KETs developed in recent years are now ready to be scaled-up, this fund will be highly relevant for their development and diffusion.

6) Boost start-ups

Europe should foster the creation of innovative KET-based start-ups and nurture their maturation and scale-up. In this way, Europe's industrial innovation landscape will be pushed forward. Smart public funding is essential for startups to cross the 'valley of death' between traditional research grants for earlystage innovations and private financing for scaling commercial business models. Innovative KET-based start-ups are heavily R&I-driven, and for these companies, the valley of death is particularly wide due to longer times to market, higher development costs, and higher product risks than for other start-ups. However, R&I-based start-ups also have more substantial knowledge spill-overs, and, once established in the market, the barriers for competitors to challenge their position are also bigger.

Stronger efforts should be made around building the community of European start-ups. Currently, start-up ecosystems are fragmented by university, city, country, and region. Creating more and deeper connections among start-ups at European level will make it possible for innovators to share best practices on

⁴⁹ http://europa.eu/rapid/press-release_IP-18-2763_en.htm.

obtaining access to funding, developing and scaling their businesses, accessing partnerships, etc. To facilitate these connections, an annual or semi-annual gathering of European and regional funding recipients and actors should be coordinated.

The Commission's Start-up and Scale-up Initiative rightly aims to give Europe's many innovative entrepreneurs every opportunity to become world-leading companies. It pulls together all the possibilities that the EU already offers and adds a new focus on venture capital investment, insolvency law and taxation. The SME-focused actions under the COSME program support a broad scale of SME-specific needs, covering skills, advanced manufacturing, financing, market access and digitisation.

Moreover, the European Innovation Council, piloted under Horizon 2020, should play an important role in boosting KET-based start-ups and making use of existing innovation hubs around KETs.

7) Facilitate development, testing and piloting

Europe has leading industrial ecosystems in almost all fields. Industrial ecosystems are much more resilient than single companies and are very difficult to acquire and copy. The real dangers for them are abrupt shifts in technologies that could undermine their competitive advantage. There is, therefore, a need for shared facilities that allow companies operating in the ecosystems to cooperate and to, for instance, apply new disruptive capabilities to their specific product, process or system without needing to acquire all the devices and competences from the beginning.

Moreover, shared pilot facilities are a key element of improving the impact of research and translating research results into real applications. They can demonstrate the practical applicability of KETs in addressing the real problems tackled by missions. This is crucial as it brings high value solutions to the market faster and reduces risk, which is particularly important for SMEs and start-ups, who often lack resources or competences to test their ideas and innovations.

Pilot environment facilities have great potential to gather critical mass for the mission-based ecosystem and to make the effort recognisable both within Europe and beyond its borders. To support them, a flexible combination of EU, national, regional and private funding is needed. Open access to infrastructure needs clear, beneficial and fair rules, both for service providers and users (as regards business models, pricing, intellectual property rights). In particular, there is still work to be done on reaching a balance between open data and strategic data (sensitive, private, commercial, dual use).

Many valuable initiatives exist at national level and the Commission has launched many more non-coordinated actions like KET centres, pilot line test beds, open labs and digital innovation hubs. It is time for a truly European strategy that would coordinate these initiatives, close eventual gaps and prioritise the infrastructure needed for KETs 4.0.

3 More Single Market for Europe

1) European virtual 'clusters of excellence'

Many EU Member States and regions use cluster policies as an important instrument for supporting innovation and regional development. This generates growth in the EU by unlocking new business opportunities in existing and new value chains and creates synergies through interregional and cross-sectoral cooperation. Clusters are instrumental in fostering innovation and growth by facilitating networking and collaborative projects, liaising between knowledge centres, and diffusing knowledge.

Cluster policies created a favourable ecosystem for innovation and entrepreneurship, including significant support for KET deployment, in which new industrial value chains are emerging across Europe.

These policies, which are also instrumental for SME scale-up and modernisation, should be complemented by a European approach that reinforces and creates clusters in locations with the best potential for successful integration of value chains, rather than being defined based on regional needs or as a vehicle for transferring services to peripheral regions.

2) Building on the success of partnerships

Directly engaging industrial players in collaborative research has proven to be critical for research productivity and technology development. Public-private partnerships have been shown to be important in building trust in a long-term vision, mobilising private investment in research, and improving the diffusion of technology. Such partnerships should be taken forward in the next framework programme for research and innovation with a high level of ambition, transparency, openness and flexibility.

3) Patents

For 2017, the European Patent Office reported a new all-time high in European patents, confirming the attractiveness of Europe as a leading technology market. European companies account for 47 % of these, and, for the first time ever, a Chinese company (Huawei) ranked first for filing the most patent applications in Europe in one year. Also at worldwide level, China files about seven times the number of patents filed by Europe.⁵⁰ Europe should therefore envision substantially increasing its share of patent applications worldwide to at least 25 % of all patents by 2030 (currently 5.5 %). This will foster innovation potential and ensure the long-term competitiveness of markets and economic growth in Europe.

The unitary patent is further delayed and with it so is the expected benefit of lowering patenting costs in Europe by 70%. High patenting costs in Europe compared to the US make a difference, notably for SMEs. SMEs are also confronted with high costs of defending their intellectual property rights when their rights are breached by others. Altogether, this situation does not ensure

⁵⁰ Source: World Intellectual Property Organisation (WIPO).

that Europe's technological and innovation strength is preserved for use in Europe.

4) Standardisation

Standardisation drives innovation because it facilitates interoperability and hence competition, diffuses information about technology and reduces transaction costs. Standardisation is particularly helpful in the formative stages of a given market. Standards are especially important in network industries, such as ICT, in that they can help build a critical mass of users. Standards ease the emergence of technological platforms.⁵¹

European standardisation reinforces the global competitiveness of European industry, especially when established in coordination with the international standardisation bodies. It is important that in international fora the EU contributes to common worldwide standards and norms with a single voice.

Incomplete ICT standardisation remains a competitive disadvantage for many European companies compared to those operating in more integrated markets. For example, it is estimated that unequal ICT standards for setting different price caps and wholesale guidelines for digital products have caused a decrease in profits of European telecom companies. This, in turn, has implications for the penetration of modern technologies, such as internet broadband deployment. Reduced profits are reducing available cash flow which further hinders the expansion of networks and other large-scale infrastructure projects. This results in slower development of modern digital infrastructure in Europe.

4 More Social Dialogue and Participation in Europe

The ongoing revolution in industrial production and the fast rate of innovation is profoundly changing working conditions and the ways in which work is performed. It is therefore particularly important to steer this transformation with a process of social dialogue and to ensure, in line with the principles and rights agreed at the Gothenburg Social Summit for fair jobs and growth in November 2017⁵², which workers and employees are consulted on the design and implementation of the policies for industry and innovation.

 ⁵¹ See Swann, P.G.M. (2000), 'The Economics of Standardisation', *Final Report for Standards and Technical Regulations Directorate*, Department of Trade and Industry, United Kingdom.
⁵² http://data.consilium.europa.eu/doc/document/ST-13129-2017-INIT/en/pdf.

Notably Principle 8: 'The social partners shall be consulted on the design and implementation of economic, employment and social policies according to national practices. They shall be encouraged to negotiate and conclude collective agreements in matters relevant to them, while respecting their autonomy and the right to collective action. Where appropriate, agreements concluded between the social partners shall be implemented at the level of the Union and its Member States.

Workers or their representatives have the right to be informed and consulted in good time on matters relevant to them, in particular on the transfer, restructuring and merger of undertakings and on collective redundancies.

Support for increased capacity of social partners to promote social dialogue shall be encouraged.' https://ec.europa.eu/commission/priorities/deeper-and-fairer-economic-and-monetary-union/european-pillar-social-rights/european-pillar-social-rights-20-principles_en.

Members of the High Level Strategy Group on Industrial Technologies

Mr Jürgen Rüttgers

Chair and former Federal Minister for Science and Research in Germany

- German Federal Minister for Education, Science, Research and Technology from 1994 to 1998, Member of the German Bundestag from 1987 until 2000.
- 9th Minister President of North Rhine-Westphalia, from 2005 to 2010.

Ms Cecilia Bonefeld-Dahl

Director General, Digital Europe

- More than 20 years of experience in the ICT industry. Previously held international positions for IBM and Oracle as well as with SMEs building business across Europe and China.
- Served as board member of the Danish Chamber of Commerce and Chairman of the Board of the Danish ICT association (ITB).

Ms Sabine Herlitschka

Chief Executive Officer & Chief Technology Officer Infineon Technologies, Austria AG

- Previously, Director of European and International Programmes in the Austrian Research Promotion Agency; Fulbright Scholar at Johns Hopkins University/SAIS and George Washington University in Washington DC/U.S.
- More than 20 years of experience in European Research & Innovation Programmes as Coordinating National Contact Point, project coordinator & evaluator, member of high profile European & international expert groups. Implementation of strategic international research, technology and innovation activities, particularly with the U.S., China and Russia.

Mr Wim van Saarloos

President, Royal Netherlands Academy of Arts and Sciences

- Professor of Theoretical Physics and conductor of ground-breaking research in the field.
- Vice-President of Dutch Royal Academy, Director of the Foundation for Fundamental Research on Matter (FOM), Fellow of the American Physical Society.

Ms Anna Hultin Stigenberg

Senior Manager, Technology Sandvik Coromant

• Various management positions at the global high-tech engineering group Sandvik, both in R&D, product portfolio management, business development.

• Board member of RISE (Research Institutes of Sweden), and chair of Materials Science and Engineering committee at SSF, Swedish Foundation for Strategic Research.

Mr Alistair Nolan

Senior Policy Analyst, Directorate for Science, Technology and Innovation, OECD

- Managing an activity across various parts of the OECD entitled 'Enabling the Next Production Revolution' including impacts on production, and implications for policy, of recent advances in digital technologies (including AI), biotechnology, nanotechnology, new materials and 3D printing.
- Led a two-year OECD project to assess the role of intangible assets in innovation and growth, leading to the book Supporting Investment in Knowledge Capital, Growth and Innovation.

Ms Susan Rosser

Director of the UK centre for Mammalian Synthetic Biology Research Centre

- EPSRC Leadership Fellowship in Synthetic Biology.
- Member of the Scottish Science Advisory Council.

Mr Iñaki San Sebastian

CEO, Tecnalia

- Long serving experience in an RTO environment, Industrial Engineer and an MBA holder.
- EARTO Board and Steering Committee member.

Ms Bernadette Ségol

Former Secretary-General, European Trade Union Confederation

- Experience in international and European trade union movement since 1974 and former Director of Office of the International Federation of Employees.
- In 2000 she was appointed as Secretary General of Uni-Europa, the European trade union federation.

Ms Eva Stejskalová

Partner at MicroStep

- Founder of MicroStep- worldwide manufacturer of CNC plasma and laser cutting machines
- Previously Assistant Lecturer at the Department of Automation participating in applied research projects.

Mr Hugo Thienpont

Professor, Chair Applied Physics and Photonics Department, Vrije Universiteit Brussels

- Director of the Photonics Research group engaged in fundamental and applied research topics.
- More than SCI 810-stated journal papers and around 400 publications in international conference proceedings, 15 conference proceedings and authored 7 chapters in books.

Mr Tullio Tolio

Professor at Politecnico di Milano, Department of Mechanical Engineering, Director of the institute ITIA of the National Research Council of Italy (CNR)

- President of the Scientific Technical Committee of the Italian Cluster 'Intelligent Factories', President of the Italian Association of Manufacturing (AITeM).
- Director of the Flagship Project 'Factories of the Future-Italy' of the Italian Ministry of Education, Universities and Research (MIUR).

Mr Antti Vasara

President and CEO VTT, Vice-president EARTO

- Technology industry executive with close to 20 years of general management experience from international companies.
- Board of director experience from several public and private companies.

Ms Adiari Vazquez

Investment Manager, Caixa Capital

- Cleantech lead in the Caixa Capital venture capital team, previously an engineer and consultant in water-focused cleantech projects.
- Distinguished as an NSF Graduate Fellow, spearheaded research executed at Harvard, MIT and the U.S. Department of Energy, discovering novel microbial pathways that aggravate mercury pollution.

Getting in touch with the EU

IN PERSON

All over the European Union there are hundreds of Europe Direct Information Centres. You can find the address of the centre nearest you at: **http://europa.eu/contact**

ON THE PHONE OR BY E-MAIL

Europe Direct is a service that answers your questions about the European Union. You can contact this service

- by freephone: 00 800 6 7 8 9 10 11 (certain operators may charge for these calls),
- at the following standard number: +32 22999696 or
- by electronic mail via: http://europa.eu/contact

Finding information about the EU

ONLINE

Information about the European Union in all the official languages of the EU is available on the Europa website at: **http://europa.eu**

EU PUBLICATIONS

You can download or order free and priced EU publications from EU Bookshop at: **http://bookshop.europa.eu.** Multiple copies of free publications may be obtained by contacting Europe Direct or your local information centre (see http://europa.eu/contact)

EU LAW AND RELATED DOCUMENTS

For access to legal information from the EU, including all EU law since 1951 in all the official language versions, go to EUR-Lex at: **http://eur-lex.europa.eu**

OPEN DATA FROM THE EU

The EU Open Data Portal (http://data.europa.eu/euodp/en/data) provides access to datasets from the EU. Data can be downloaded and reused for free, both for commercial and non-commercial purposes.

The European Commission appointed the High-level Strategy Group on industrial technologies to assess, discuss, and recommend support for research and innovation in the area of Key Enabling Technologies, also in view of future research and innovation programmes. Two new Key Enabling Technologies are proposed: artificial intelligence, and security and connectivity. The group also advises that, while biotechnology should be broadened to «life sciences», the EU has to continue to prioritise advanced manufacturing technologies, advanced materials and nanotechnologies, micro-/nano-electronics and photonics. With the right level of ambition and investment, Key Enabling Technologies will contribute to support growth and democracy through stronger citizens' engagement, and prosperity through more equality and better jobs. The group recommends the EU and Member States to focus their policies on «inclusive growth» and the sustainable protection of our planet. The main goal is Europe to be the best place to live, study, work and flourish.

Research and Innovation policy

